AMD GPU RX580

Серия Radeon RX 400 стала большим коммерческим успехом для графического подразделения AMD. После четырех лет томительного ожидания производители GPU получили в свое распоряжение технологический процесс нового поколения — 14/16 нм FinFET, и AMD, на этот раз избравшая GlobalFoundries в качестве подрядчика по выпуску микросхем, в 2016 году представила линейку видеокарт AMD GPU RX580, RX 470 и RX 480, охватившую низкий и средний сегменты производительности. Благодаря привлекательным ценам AMD удалось составит серьезную конкуренцию серии GeForce 10 от NVIDIA в соответствующих ценовых категориях, но с технической точки зрения семейство Polaris не вполне удовлетворило энтузиастов, поскольку соперник AMD гораздо лучше распорядился возможностями нового техпроцесса с точки зрения энергоэффективности и частотного потенциала GPU.

Слухи о том, что AMD работает над глубокой ревизией линейки Polaris, возникли еще в октябре прошлого года — всего через пару месяцев после того, как последний представитель 400-й серии — Radeon RX 460 — поступил в продажу. И действительно, серия Radeon 500, по утверждению производителя, не просто состоит из перемаркированных моделей Radeon 400, а комплектуется кристаллами Polaris второго поколения, в которых оптимизированный дизайн сочетается с повзрослевшей технологией 14 нм FinFET.

Графический процессор Polaris 20 представляет собой обновленную версию ядра Polaris 10, установленного в Radeon RX 480. Как следствие, состав вычислительных блоков не претерпел изменений. Как и Polaris 10, полностью функциональная версия Polaris 20 располагает 2304 шейдерными ALU, 144 блоками наложения текстур и 32 ROP, а с оперативной памятью чип соединен 256-битной шиной с пропускной способностью 8 Гбит/с на контакт.

Напомним, что с точки зрения микроархитектуры серия Polaris имеет ряд отличий от предыдущих продуктов AMD на основе логики GCN версии 1.2 (чип Fiji в составе Radeon R9 Nano, R9 Fury и Fury X), среди которых важное место занимает компрессия цвета с соотношением вплоть до 8:1, позволяющая более эффективно расходовать пропускную способность шины RAM. Из прочих оптимизаций внутренней структуры GPU, представленных в GCN 1.3, отметим оптимизацию геометрического движка, способного отсекать на ранних стадиях конвейера полигоны нулевого размера либо не имеющие пикселов в проекции. Работа Compute Unit’а (основной структуры GCN, объединяющей шейдерные ALU и блоки наложения текстур) также подверглась тюнингу в Polaris c целью повышения его удельной производительности.

Информация